Algorithm for Image Registration and Clutter and Jitter Noise Reduction
نویسنده
چکیده
This paper presents an analytical, computational method whereby two-dimensional images of an optical source represented in terms of a set of detector array signals can be registered with respect to a reference set of detector array signals. The detector image is recovered from the detector array signals and represented over a local region by a fourth order, two-dimensional taylor series. This local detector image can then be registered by a general linear transformation with respect to a reference detector image. The detector signal in the reference frame is reconstructed by integrating this detector image over the respective reference pixel. For cases in which the general linear transformation is uncertain by up to plus-or-minus two pixels, the general linear transformation can be determined by least squares fitting the detector image to the reference detector image. This registration process reduces clutter and jitter noise to a level comparable to the electronic noise level of the detector system. Test results with and without electronic noise using an analytical test function are presented.
منابع مشابه
Clutter Removal in Sonar Image Target Tracking Using PHD Filter
In this paper we have presented a new procedure for sonar image target tracking using PHD filter besides K-means algorithm in high density clutter environment. We have presented K-means as data clustering technique in this paper to estimate the location of targets. Sonar images target tracking is a very good sample of high clutter environment. As can be seen, PHD filter because of its special f...
متن کاملSoftposit: an Algorithm for Registration of 3d Models to Noisy Perspective Images Combining Softassign and Posit
We propose an algorithm, SoftPOSIT, for automatic model-to-image registration. This algorithm combines two techniques, (1) a solution to the correspondence problem by an iterative technique called Softassign, and (2) a solution to the pose problem by an iterative technique called POSIT. These two techniques are combined into a single iteration loop. The present report focuses on the description...
متن کاملSimultaneous Pose and Correspondence Determination using Line Features
We present a new robust line matching algorithm for solving the model-to-image registration problem. Given a model consisting of 3D lines and a cluttered perspective image of this model, the algorithm simultaneously estimates the pose of the model and the correspondences of model lines to image lines. The algorithm combines softassign for determining correspondences and POSIT for determining po...
متن کاملDPML-Risk: An Efficient Algorithm for Image Registration
Targets and objects registration and tracking in a sequence of images play an important role in various areas. One of the methods in image registration is feature-based algorithm which is accomplished in two steps. The first step includes finding features of sensed and reference images. In this step, a scale space is used to reduce the sensitivity of detected features to the scale changes. Afterw...
متن کاملSimultaneous Pose and Correspondence Determination using Line Feature
We present a new robust line matching algorithm for solving the model-to-image registration problem. Given a model consisting of 3D lines and a cluttered perspective image of this model, the algorithm simultaneously estimates the pose of the model and the correspondences of model lines to image lines. The algorithm combines softassign for determining correspondences and POSIT for determining po...
متن کامل